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 The crowd within a confined space can potentially lead to air 

stagnation in waiting areas. Constantly running air conditioning 

throughout the day to balance air circulation may result in excessive 

energy consumption by the building. To address this issue, Heating, 

Ventilating, and Air-Conditioning (HVAC) systems are employed to 

manage and regulate indoor energy usage. However, sensor-based 

detection often fails to capture human variables promptly, resulting in 

less accurate density readings. Camera footage proves to be more 

reliable than sensors in accurately detecting crowds. This research 

utilizes You Only Look Once version 8 (YOLOv8), a robust algorithm 

for object detection, particularly effective in crowd detection for 

images, along with Convolutional Vision Transformer (CvT) for 

crowd density level classification into "Normal" and "Crowded" 

levels. CvT enhances classification accuracy by incorporating function 

from Convolutional Neural Network (CNN) in model training, 

including receptive field, shared weights, etc. By integrating YOLOv8 

and CvT, this method focuses on accurately classifying crowd density 

levels after identifying human presence in the waiting area (indoor). 

Evaluation metrics include mean Average Precision (mAP) for 

YOLOv8, and accuracy, precision, recall, and f1-score for CvT. This 

approach directly influences the management of HVAC systems. 
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1. INTRODUCTION 

Efficiency in energy consumption within residential spaces has become a critical consideration for 

enhancing energy savings indoors. Energy conservation is closely linked to electricity consumption and human 

density within enclosed areas. Humans play a pivotal role in the energy conservation of a building. The comfort 

of a residence equates to the comfort experienced within its spaces. Waiting rooms are among the areas 

necessitating meticulous management and comfort systems. Heating, Ventilating, and Air-Conditioning 

(HVAC) systems are imperative for regulating room temperature and air circulation in waiting areas [1]. 

Studies indicate that insights into building occupancy can lead to energy savings ranging from 10% to 40%, 

encompassing factors such as the number of occupants within a shared space [2]. HVAC systems aim to 

minimize air-conditioner usage while maintaining indoor air circulation. 

Waiting rooms serve as designated spaces for queueing and receiving services. Each waiting room 

typically accommodates varying capacities based on room size and service importance. Overcapacity tends to 

disrupt air circulation within waiting rooms [1]. Increased occupancy in waiting areas can lead to congestion 

and stuffy conditions. Regulating room temperature can mitigate electricity usage indoors. 
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Manual methods for counting individuals in waiting areas are not only time-consuming and resource-

intensive but also prone to errors and inaccuracies. Alternative methods such as Passive Infrared (PIR) sensors 

and CO2 sensors each have their limitations for indoor crowd detection. PIR sensors only detect moving objects 

within a room, thus failing to detect stationary occupants. CO2 sensor methods still rely on scheduled air 

circulation additions, such as opening windows to increase circulation according to a predetermined schedule, 

and are constrained by their unscheduled system nature [2]. Hence, a more sophisticated and automated 

approach is needed to address waiting room density issues. 

Recent advancements propose numerous Convolutional Neural Network (CNN)-based methods with 

promising results, where CNN can map images into denser density maps than hand-crafted features [3]. This 

technique swiftly and accurately detects and classifies human density levels in waiting rooms, subsequently 

determining room temperatures. YOLOv8 is recognized as the most advanced head detection technology to 

date. By delving deeper into CNN layers, YOLOv8 can extract more detailed feature representations. YOLOv8 

incorporates this concept into its structure by employing repeated modules and multiple head detections for 

predictions [4]. Vision Transformer (ViT) was the first to demonstrate that pure Transformer architectures can 

achieve optimal image classification performance when provided with sufficient data [5]. The design of the 

Convolutional Vision Transformer (CvT) introduces convolution to the two core parts of the ViT architecture. 

CvT achieves optimal performance when evaluated during the pre-training stage on a larger scale. 

Prior research has laid the groundwork for crowd detection, yet there remains a gap in effectively 

addressing crowd detection and suggest for future development to optimize feature extraction networks and 

refining the selection method of bounding boxes to streamline the process [14]. Considering YOLOv8, which 

implements more advanced algorithms on predicted bounding boxes and objectiveness scores compared to its 

previous versions, this research will adopt YOLO v8 for waiting room crowd detection and CvT for classifying 

crowd level based on images processed using YOLO. This study focuses on measuring crowd levels indoors 

rather than simply counting individuals. The innovation of this research lies in developing a model that 

integrates YOLOv8 with CvT, a method not extensively explored in current literature. 

 

2. RELATED WORKS 

2.1.  Crowd Detection 

Crowd measurements have been conducted using sensor-based approaches. Sensor-based approaches 

have proven to be accurate for measuring crowds if there are minimal changes within a single capture. Crowd 

measurement via Wireless Fidelity (WiFi) can leverage existing devices such as smartphones. However, 

detection constraints or errors may occur when someone does not carry a smartphone or if someone reads their 

smartphone device more than once. Infrared technology sensors and CO2 detection sensors within a room are 

also commonly used technologies to estimate indoor occupancy crowd [1]. However, both encounter their own 

constraints that render them inaccurate for crowd estimation. According to Zou et al. [1], infrared sensors have 

limitations in capturing the presence of individuals and are unreliable in detecting stationary individuals. 

Sensors that examine CO2 dispersion within a room will require time before real-time crowd estimation within 

the dwelling/room can be achieved [2]. 

According to Sun et al. [2], camera captures can provide precise results regarding occupancy both in 

real-time and statically. The presence of stationary individuals or individuals obstructed by other objects such 

as tables, chairs, partitions, etc., can be effectively addressed when utilizing cameras as occupancy detectors. 

The models used with camera captures are also increasingly diverse and evolving. The developments yielded 

can address issues such as unstable images due to human movements, similarity between detected heads and 

other objects, and/or objects obstructing the human form [2]. 

 

2.2.  YOLO 

You Only Look Once (YOLO) utilizes a deep CNN to process images end-to-end and generate object 

predictions in a single step (one-shot). YOLO v8 divides the input image into a grid of cells with a specific 

size. Each cell in the grid is responsible for predicting multiple bounding boxes and the classes of objects that 

may be contained within them then utilizes a series of algorithms applied to the predicted bounding boxes and 

objective scores generated by the neural network [9]. This version introduces numerous improvements 

compared to the earlier versions of YOLO such as a new neural network architecture that utilizes both Feature 

Pyramid Network (FPN) and Path Aggregation Network (PAN) and a new labeling tool that simplifies the 

annotation process [4]. The FPN works by gradually reducing the spatial resolution of the input image while 

increasing the number of feature channels. This results in the creation of feature maps that are capable of 

detecting objects at different scales and resolutions. The PAN architecture, on the other hand, aggregates 

features from different levels of the network through skip connections. This combination is better than YOLO 

v5 which uses a modified version of CSPDarknet architecture. Architecture of YOLO v8 is shown in Figure 1. 
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Figure 1. YOLO v8 Architecture 

 

YOLO v8 has a drawback: it is slightly slower than YOLO v5 in terms of object detection speed. 

However, YOLO v8 is still capable of processing images in real-time on modern GPUs. Based on research 

[19] for human detection using aerial images, it was found that YOLO v8 outperformed with a precision of 

0.84, recall of 0.75, and an F1-score of 0.79. In comparison, YOLO v5 achieved a precision of 0.81, recall of 

0.75, and an F1-score of 0.78. The F1-score is considered the accuracy measure of the model in detecting 

humans, thus YOLO v8 is superior. In research [21] for headcount and detecting suspicious activity, YOLO 

v8 performed better compared to YOLO v4 and YOLO v3. YOLO v8 produced an F1-score of 42.40% and an 

mAP of 51.60%, while YOLO v4 produced an F1-score of 39.70% and an mAP of 44.90%, and YOLO v3 

produced an F1-score of 29.30% and an mAP of 34.40%. 

 

2.3.  CvT 

Transformers have dominated empirical machine learning models of natural language processing [7]. 

The Transformer is an architecture in machine learning that processes sequential data using attention 

mechanisms and feed-forward neural networks to capture relationships between sequence elements and solve 

long-distance dependency problems. Its advantage lies in its ability to process data in parallel.  

The Vision Transformer (ViT) is the first computer vision model to rely exclusively on the 

Transformer architecture to obtain competitive image classification performance at large scale. In ViT, 

initially, images are divided into discrete non-overlapping patches (e.g. 16x16). Each patch is combined with 

a unique positional encoding to capture basic spatial details, and then fed into a series of standard Transformer 

layers iteratively, consisting of Multi-Head Self-Attention module (MHSA) and Position-wise Feed-forward 

module (FFN). This process aims to capture global relationships within the image, facilitating classification 

tasks. 

In Convolutional Vision Transformer (CvT), convolutions are introduced to two primary parts of the 

vision Transformer: first, to replace the existing Position-wise Linear Projection for the attention operation 

with Convolutional Projection, and second, to use hierarchical multi-stage structure to enable varied resolution 

of 2D reshaped token maps, similar to CNNs [5].  

 

Figure 2. CvT Architecture 

 

Figure 2 shows the architecture of CvT. In the first stage, the image will be divided into token patches. 

Subsequently, convolutional operations will be embedded using stacked Convolutional Transformers. In the 

second stage, tokens are once again embedded with convolutional operations at a larger scale, providing a 

broader context. In the third stage, tokens are re-embedded to refine the process while gathering deeper spatial 

and contextual information. In this final stage, the tokens map undergoes processing with additional blocks to 

produce the final representation for classification. 
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In research [22] on galaxy morphology classification, it was found that CvT provided the best results 

with an accuracy of 0.98 compared to ViT, which achieved an accuracy of 0.94. This research was conducted 

using a galaxy image dataset. The study conducted by [5] provided the best results for CvT on the CIFAR 100 

dataset, with an accuracy of 94.09 compared to ViT, which achieved an accuracy of 91.67. 

 

3. RESEARCH METHOD 

3.1.  Design of Experiment 

This research employs an experimental approach by modifying the hyperparameters used in each 

model, YOLOv8 and CvT. Hyperparameters are one of the components or supporting variables of the model 

that can be adjusted or customized. The combination of hyperparameters can determine the success and 

reliability of the model, besides being determined by the completeness and variety of the data, and also the 

model used. The Design of Experiment is clearly outlined in Table 1, Table 2, and Table 3. 

 

Table 1. Experiment setup model YOLO 

Hyperparameter Used Parameter 

Epoch 50, 100, 150 

Learning Rate 0.01 

Batch Size 16 

Optimizer Adam 

 

Table 2. Experiment setup model CvT 

Hyperparameter Used Parameter 

Epoch 100, 500 

Learning Rate 0.000125 ; 0.0001 

Batch Size 32, 64 

Batch Normalization 0.0 ; 1.0 

Optimizer Adam 

 

Table 3. Experiment setup model Pre-Trained CvT 

Hyperparameter Used Parameter 

Epoch 5 

 

Epochs assist the model in iterating through the dataset into the YOLOv8 and CvT networks. Epochs 

are used to optimize the model's learning process. For every batch or sample data that completes the reading 

process until the modeling process returns to the initial training stage, it signifies the completion of one epoch. 

Iteration refers to repeating the process of reading one batch of data, thus the number of iterations will be equal 

to the number of batches. 

The determination of hyperparameter combinations is done manually, a process often referred to as 

'babysitting' or 'trial and error' [18]. Using the babysitting method involves implementing hyperparameter 

values after building the model, which also considers the short project timeline, thus only a few hyperparameter 

values are tested. The hyperparameter values are determined based on research related to hyperparameter 

tuning [15] and the development of the YOLOv8 model, which uses a learning rate of 0.01 [16]. 

In [15], an epoch of 50 and a batch size of 32 were considered optimal when using grid search, while 

an epoch of 100 and a batch size of 32 were found to be optimal when using random search. Since this study 

employs the babysitting method, every combination resulting from the previous grid search and random search 

studies was tested. The goal is to achieve optimal modeling results with the right combination of 

hyperparameters, applied to indoor density data. The determination of the learning rate also follows the studies 

from [16] and [17]. 

The decision to use the YOLOv8 model for crowd detection is based on YOLOv8's ability to detect 

objects, especially overlapping objects, making it suitable for detecting human density based on detected heads 

in a crowd. The CvT to be tested will use both an untrained CvT and a pre-trained CvT for density classification. 

These two models will be integrated or work in a pipeline, affecting their performance after modeling compared 

to their performance when each model (YOLOv8 and CvT) works separately. Previous research has not yet 

explored the pipeline integration of YOLOv8 and CvT for head detection and spatial density classification. 

 

3.2.  Metric Evaluation 

Evaluation serves as a measurement of the model's reliability when used to process new data, 

particularly in detecting crowd density and determining its level [6]. Evaluation metrics provide an objective 

assessment of the model. The evaluation metrics for the first stage modeling (density detection) by YOLOv8 

will employ precision, recall, and mean Average Precision (mAP). The metrics for the second stage modeling 
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(classification) by CvT will utilize precision, recall, and f1-score. True Positive (TP) indicates the number of 

targets correctly predicted as positive categories. False Negative (FN) represents the number of positive targets 

incorrectly predicted as negative categories. False Positive (FP) indicates categories incorrectly predicted as 

positive categories. 

Precision measures the model's success in correctly predicting targets as positive categories among 

all data predicted as positive categories [11]. It is used as an evaluation criterion if the focus is on examining 

targets predicted as positive categories. 

 

 Precision = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
   (1) 

 

Recall indicates the ratio of the model's success in correctly predicting positive categories among all 

true values of positive categories. 

 

 Recall = 
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
  (2) 

 

F1-Score considers the values of Recall and Precision. It takes two values into consideration for a 

more balanced evaluation, as it includes FP and FN, thus accounting for prediction errors [8]. It is typically 

used when the number of instances in each class is unbalanced, hence F1-Score is considered as the evaluation 

metric. 

 

 F1-Score =  
2 × 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
  (3) 

 

Mean Average Precision (mAP) is a commonly used metric in object detection. The calculation is 

based on the AP (Average Precision) values, taking into account the Intersection over Union (IoU) threshold. 

AP calculates the average area under the precision-recall curve. IoU indicates the overlap between predicted 

and actual bounding boxes in the image. In mAP, a threshold of 0.5 or 50% will be used, meaning that if the 

IoU value reaches 0.5 or higher, it will be included in the mAP calculation. Mean Average Precision as an 

evaluation metric will calculate for all object classes. 

 

 AP (Average Precision) = ∫ 𝑃(𝑅)𝑑𝑅
1

0
  (4) 

 

 mAP (mean Average Precision) = 
1

𝑁
∑ 𝐴𝑃𝑖
𝑛
𝑖=1   (5) 

 

3.3.  Dataset 

This research utilizes publicly accessible datasets from Roboflow (head detection) and Room Human 

Counting (RHC) + Bank. The Roboflow dataset consists of RGB images with bounding boxes that detect heads 

within crowds. The data are captured directly by cameras in crowded indoor locations. This dataset is employed 

to support modeling for cases of crowd density in waiting areas, thereby assisting in modeling human head 

detection/crowd detection within indoor spaces. 

The RHC dataset exhibits similar conditions, containing data of crowds in meeting rooms captured 

by CCTV cameras. Images from the RHC dataset are combined with the Bank dataset, obtained manually 

through browser searches for bank waiting room images. The Bank dataset needs to be merged with the RHC 

dataset due to their similar indoor enclosed conditions and the lack of detected head information, as well as to 

address the imbalance in the dataset conditions. 

Density detection modeling with YOLOv8 utilizes the Roboflow dataset as input images and is 

divided into three data partitions: training data, validation data, and test data. The training data is used during 

model training to assist the model in learning patterns or training its knowledge to detect human heads. The 

learned results are validated or confirmed for prediction accuracy using validation data. Finally, the reliability 

of the head detection model is tested using test data. The breakdown can be seen in Table 4. 

 

Table 4. Roboflow Dataset (YOLOv8) 

Data Split Number of Images Percentage 

Train 1630 69,98% 

Val 466 20,00% 

Test 233 10,00% 
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Figure 3. Roboflow Crowd Sample Figure 4. Density Map Sample 

 

Figure 3 shows an example image depicting indoor human density. Detected heads are marked with 

green boxes or bounding boxes labeled "head." The images undergo pre-processing, including resizing to 

224x224, to standardize the input for modeling. This data aids in developing a head detection model using 

YOLOv8. Subsequently, the process continues to the image class annotation stage for each data point detected 

by the YOLOv8 model. 

The classification process will utilize both the RHC + Bank dataset and the Roboflow dataset. For the 

RHC + Bank dataset, further preprocessing is performed after detecting the head using YOLO v8, which 

involves converting it into a density map with a Gaussian kernel specification of 20x20 pixels and a sigma size 

of 5, it can be seen from Figure 4. This kernel size was chosen considering the estimated size of the head in the 

images [20][23]. 

The division into "Normal" and "Crowded" classes of each image is determined by some calculations 

and also determined by estimating or predicting the number of people in it. For the RHC dataset, due to its 

static camera characteristics, head detection is counted. If more than 5 heads are detected, it is categorized as 

dense, and if fewer than 5 heads are detected, it is categorized as normal. The annotation is performed manually 

based on the knowledge of 3 persons of the authors by separating images that meet the density criteria into 

their respective class folders.  To ensure annotation consistency, an Inter-Rater Reliability (IRR) check is 

conducted using Cohen’s Kappa (K) as an agreement coefficient, with a value greater than 0.8, determined by 

the following formula, 

 

 K = 
𝑝𝑜− 𝑝𝑒

1− 𝑝𝑒
   (6) 

 

where 𝑝𝑜 represents the number of actual observed agreements and 𝑝𝑒 represents the number of chance 

agreements. The results of the class division can be observed in Table 5 and Table 6. 

 

Table 5. Roboflow Dataset (CvT) 

Data Split Class Number of Images Percentage 

Train 
Normal 200 

66,22% 
Crowded 200 

Val 
Normal 62 

20,52% 
Crowded 62 

Test 
Normal 40 

13,24% 
Crowded 40 

 

Table 6. RHC + Bank Dataset (CvT) 

Data Split Class Number of Images Percentage 

Train 
Normal 429 

84,28% 
Crowded 429 

Val 
Normal 50 

9,82% 
Crowded 50 

Test 
Normal 30 

5,89% 
Crowded 30 

 

3.4.  Device 

This research utilizes both local and online devices. Locally, the model is run using a laptop device, 

while online, it is executed through Google Colab. The specifications for both can be seen in the following 

Table 7. 
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Table 7. Device & Environment Specification 

Device Specification 

Laptop (local) 

Up to Intel® Core™ i7-13620H processor 

Windows 11 Home / Windows 11 Pro (MSI 

recommends Windows 11 Pro for business.) 

Up to GeForce RTX™ 4060 Laptop GPU 8GB GDDR6 

Powered by NVIDIA DLSS 3, ultra-efficient Ada 

Lovelace arch, and Max-Q Technologies. 

RAM 16GB GDDR5 

Google Colab 

(Online - Pro) 

RAM 84GB 

RAM GPU 40GB 

HardDisk Space 200GB 

GPU Nvidia A100 Tensor Core GPU 

 
3.5.  Proposed Method 

In this study, YOLOv8 will be specifically utilized for crowd detection, where its detection results 

will be fed into the subsequent model for classification purposes. With its ability to directly generate object 

predictions and enhance accuracy in object detection, YOLO v8 is expected to provide an effective solution 

for addressing crowd detection tasks. This signifies a progressive stride in image analysis, where the initial 

detection outcomes from YOLOv8 serve as a cornerstone for more contextual and profound decision-making 

by the CvT model in assessing crowd levels classification. 

This section will explain the architectural design of the pipeline model of YOLOv8 for crowd 

detection and CvT for image classification. 

 

 

Figure 5. Architecture of Crowd Density Level Classification 

 

From this research architecture in Figure 5, in the first stage of the pipeline, the RGB image will be 

trained to detect crowds based on each detected head within the image. This training is conducted by the head 

detection model using YOLOv8, which will yield a loss value and a trained model capable of forming head 

bounding boxes on the image, with the aim of approximating the ground-truth of the crowd in the image.  The 

loss formula used in YOLO v8 is as follows. 

𝐿 =  
𝜆𝑏𝑜𝑥

𝑁𝑝𝑜𝑠
∑𝑥,𝑦 ⇑ 𝑐𝑥,𝑦

∗  [1 − 𝑞𝑥,𝑦 +
||𝑏𝑥,𝑦−�̂�𝑥,𝑦||

2

2

𝜌2
+ 𝛼𝑥,𝑦𝑣𝑥,𝑦]  

+ 
𝜆𝑐𝑙𝑠

𝑁𝑝𝑜𝑠
∑𝑥,𝑦 ∑𝑐∈𝑐𝑙𝑎𝑠𝑠𝑒𝑠 𝑦𝑐𝑙𝑜𝑔(�̂�𝑐) + (1 − 𝑦𝑐)𝑙𝑜𝑔(1 − �̂�𝑐)  

+ 
𝜆𝑑𝑓𝑙

𝑁𝑝𝑜𝑠
∑𝑥,𝑦 ⇑ 𝑐𝑥,𝑦

∗ [−(𝑞(𝑥,𝑦) + 1 − 𝑞𝑥,𝑦)𝑙𝑜𝑔(�̂�𝑥,𝑦) 

(7) 
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+ (𝑞𝑥,𝑦 − 𝑞(𝑥,𝑦)−1)𝑙𝑜𝑔(�̂�(𝑥,𝑦)+1)]  

where: 

𝑞𝑥,𝑦 = 𝐼𝑜𝑈𝑥,𝑦 =
�̂�𝑥,𝑦  ∩   𝛽𝑥,𝑦

�̂�𝑥,𝑦  ∪   𝛽𝑥,𝑦
 

𝑣𝑥,𝑦 = 
4

𝛱2
(𝑎𝑟𝑐𝑡𝑎𝑛 (

𝑤𝑥,𝑦

ℎ𝑥,𝑦
) − 𝑎𝑟𝑐𝑡𝑎𝑛 (

�̂�𝑥,𝑦

ℎ̂𝑥,𝑦
))

2

 

𝛼𝑥,𝑦 = 
𝑣

1 − 𝑞𝑥,𝑦
 

�̂�𝑐 =  𝜎(⋅) 
�̂�𝑥,𝑦 =  𝑠𝑜𝑓𝑡𝑚𝑎𝑥(⋅) 

 

and: 

• 𝑁𝑝𝑜𝑠  is the total number of cells containing an object. 

• ⇑ 𝑐𝑥,𝑦
∗  is an indication function for the cells containing an object. 

• 𝛽𝑥,𝑦 is a tuple that represents the ground truth bounding box consisting of 

(𝑥𝑐𝑜𝑜𝑟𝑑 , 𝑦𝑐𝑜𝑜𝑟𝑑 , 𝑤𝑖𝑑𝑡ℎ, ℎ𝑒𝑖𝑔ℎ𝑡). 

• �̂�𝑥,𝑦 is the respective cell’s predicted box. 

• 𝑏𝑥,𝑦 is a tuple represents the central point of the ground truth bounding box. 

• 𝑦𝑐 is the ground truth label for class c (not grid cell c) for each individual grid cell (x,y) in the input, 

regardless if an object is present. 

• 𝑞(𝑥,𝑦)+/−1 are the nearest predicted boxes IoUs (left and right) ∈ 𝑐𝑥,𝑦
∗ . 

• 𝑤𝑥,𝑦 and ℎ𝑥,𝑦 are the respective boxes width and height. 

• 𝜌 is the diagonal length of the smallest enclosing box covering the predicted and ground truth 
boxes. 
 

This works by first dividing the input image into an S x S grid where each grid cell. Each cell is 

responsible for predicting the bounding box of an object within the image which is facilitated by a loss function 

composed of three components. Firstly, the Complete IoU (CIoU) loss serves as the box loss, quantifying the 

spatial agreement between the predicted and ground-truth bounding boxes. Secondly, the standard binary cross-

entropy is employed as the classification loss, allowing each cell to predict multiple classes by treating each 

class prediction as a binary classification problem. Lastly, the distribution focal loss, acting as the third term, 

helps address class imbalance by prioritizing the accurate classification of difficult classes during model 

training. These three components can enhance the overall performance of the object detection model. 

After the best-trained head detection model is generated, the image will then be processed. The 

identification results will be marked by a bounding box surrounding each detected head. Next, in the second 

stage of the pipeline, the images containing bounding-boxes generated from the previous stage and with the 

ground-truth labels from annotation results will be fed as inputs to the classification model using CvT. During 

the training process, a loss function will be utilized to iteratively optimize the model parameters to minimize 

the difference between the predicted and ground-truth crowd level labels, and aims to enhance the model's 

ability to accurately classify images into "Normal" and "Crowded". The loss function of this process is Cross-

Entropy and Label Smoothing Losses. 

The use of Cross-Entropy and Label Smoothing Losses in the Convolutional Vision Transformer 

(CvT) aims for faster convergence and a higher level of neural collapse [10], as shown in the formula (7), 

where P is the target distribution and Q is the approximation of the target distribution. 

 

 𝐻(𝑃, 𝑄)  = −∑𝑥∈𝑋 𝑃(𝑥)𝑙𝑜𝑔(𝑄(𝑥))    (8) 

 

Label Smoothing is designed to shift 10% of the weights from the target label to other labels evenly, 

aiding in reducing overfitting. This Label Smoothing Cross-Entropy provides mild regularization to the model, 

decreases overconfidence, and smoothens gradients during backpropagation, while still maintaining sharpness. 

Beside the optimization of the classification model through loss functions like Cross-Entropy and 

Label Smoothing Losses, CvT integrates a crucial convolutional process. This convolution operation within 

CvT serves as a pivotal mechanism to model local spatial contexts. Below is the formula of the convolution. 
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 𝐻𝑖 = [
𝐻𝑖−1+ 2𝑝 − 𝑠

𝑠 − 𝑜
+ 1] ,𝑊𝑖 = [

𝑊𝑖−1+ 2𝑝 − 𝑠

𝑠 − 𝑜
+ 1]  (9) 

 

The convolution operation in CvT aims to model local spatial contexts, ranging from low-level edges 

to high-level semantic primitives. 𝐻𝑖−1 and  𝑊𝑖−1 represent the height and width of the input to the layer, 

respectively. The padding (p) refers to the amount of padding added to each side of the input. Stride (s) is the 

number of steps the convolutional filter moves across the input, and dilation (o) affects the spacing between 

the points sampled by the kernel in the input. 

This convolution operation transforms  𝑥𝑖−1 into a new token map f(𝑥𝑖−1) with channel size 𝐶𝑖 and 

new dimensions for height and width. The formula takes into account stride, padding, and input size to 

determine the output dimensions. Subsequently, the process of normalization and tokenization, derived from 

the previous token map, involves flattening into the size 𝐻𝑖𝑊𝑖 x 𝐶𝑖 and normalization using layer normalization, 

aimed at stabilizing learning and model convergence. 

The Convolutional Token Embedding process then allows for adjustments in the dimensions of token 

features and the number of tokens at each stage. At every stage, the length of the token sequence is 

progressively reduced while the dimension of the token features is increased (enabling tokens to represent 

increasingly complex visual patterns over larger spatial footprints).  

The goal of the convolutional projection part is to achieve additional local spatial context modeling 

and to offer efficiency benefits by allowing subsampling from the K and V matrices. Fundamentally, the 

proposed Transformer block with Convolutional Projection is a generalization of the original Transformer 

block, wherein the Convolutional Projection utilizes Multi-Head Self-Attention (MHSA) with depth-wise 

separate convolutions as shown in Figure 6. 

 

 

Figure 6. Convolutional Projection Flow of Process 

 

In implementation, there are several stages, beginning with the original position-based linear 

projection used in ViT. This is followed by the previously discussed s x s convolutional projection. Initially, 

tokens are transformed into 2D token maps. The convolutional projection is implemented using a depth-wise 

separable convolution layer with a kernel size of s. Projected tokens are then flattened into 1D for subsequent 

processing as follows. 

 

 𝑥𝑖
𝑞/𝑘/𝑣

= 𝐹𝑙𝑎𝑡𝑡𝑒𝑛 (𝐶𝑜𝑛𝑣2𝑑(𝑅𝑒𝑠ℎ𝑎𝑝𝑒2𝐷(𝑥𝑖), 𝑠))  (10) 

 

𝑥𝑖
𝑞/𝑘/𝑣

 represents the input token for the q/k/v matrices at layer i, xi is the undisturbed token prior to 

convolutional projection, Conv2d is the depth-wise separable convolution implemented by Depth-wise Conv2d 

> BatchNorm2d > Point-wise Convolution, and s (stride) refers to the kernel size of the convolution. Depthwise 

Convolution is a process where convolution is performed separately on each channel. BatchNorm2d normalizes 

the data to accelerate convergence and enhance training effectiveness. Point-wise Convolution is the 

aggregation of information from the output of depthwise convolution using a 1×1 filter. This transformation 

ensures that during training, layers can continue learning from an input distribution that shows less internal 

covariate shift, thereby speeding up the training process.  

Convolutional projection allows for a reduction in the number of tokens required for MHSA 

operations by using a stride greater than 1 on k (key) and v (value), reducing the amount of data that must be 

processed by MHSA by four times. This design employs depth-wise separable convolution, which significantly 

reduces the number of parameters and the required floating-point operations (FLOPs). 

And lastly, to enhance performance in both models and optimize the training process, the Adam 

optimizer is employed. Adam is a frequently chosen option in neural network model training due to its ability 

to adaptively adjust the learning rate for each model parameter [12]. Figure 7 shows the algorithm of Adam. 
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Figure 7. Adam Optimization Algorithm 

 

This model utilizes predicted weights to perform both forward pass and backward propagation, and 

then uses gradients with respect to these predicted weights to update the model parameters. This approach is 

intended to more effectively direct weight updates in the "correct" direction, as opposed to using only the 

current weights. The use of weight prediction is expected to enhance the convergence of model training, 

allowing the model to more rapidly adapt and refine weights in reducing prediction errors. Below is the formula 

of Adam optimizer. 

 

 𝜃𝑡 = (1 − 𝛾𝜆)𝜃𝑡−1 −
𝛾�̂�𝑡

√�̂�𝑡 + 𝜖’
   (11) 

 

 𝑠. 𝑡.

{
  
 

  
 

𝑔𝑡 =▽𝑡 𝑓(𝜃𝑡−1),

𝑚𝑡 = 𝛽1 ⋅ 𝑚𝑡−1 + (1 − 𝛽1) ⋅ 𝑔𝑡 ,

𝑣𝑡 = 𝛽2 ⋅ 𝑣𝑡−1 + (1 − 𝛽2) ⋅ 𝑔𝑡
2,

�̂�𝑡 =
𝑚𝑡

1−𝛽1
𝑡 ,

�̂�𝑡 =
𝑣𝑡

1−𝛽1
𝑡

   (12) 

 

4. RESULTS AND DISCUSSION 

4.1.  Result 

The research results are obtained after undergoing the training and testing processes of the model. The 

evaluation metrics obtained are the results of testing on the test data, which are data that have never been 

presented during model training. The Roboflow dataset is used to train and test YOLOv8. Classification is 

tested using both the RHC + Bank dataset and the Roboflow dataset. 

The YOLOv8 modeling yields a model capable of detecting density based on human heads, with 

human heads being marked with bounding boxes. The model accurately predicts and marks the presence of 

human heads in images, despite the varied sizes of the heads and diverse human positions in the images. The 

classification model is obtained from modeling with CvT. The testing results prove to be reliable for both 

datasets, Roboflow and RHC + Bank, and the best results are selected from all experiments. 

The modeling results are influenced by hyperparameter tuning that supports the training speed, data 

grouping, and the number of model iterations in learning data patterns. Hyperparameters play a crucial role in 

training the model so that it can detect density quickly and accurately and can determine its density level. 

 

Table 8. YOLOv8 Crowd Detection Model Result 

Hyperparameter mAP50 Precision Recall 

Epoch : 50 

Learning Rate : 0.01 
Batch-Size : 16 

0.4992 0.914 0.839 

Epoch : 100 0.92683 0.90623 0.86974 
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Hyperparameter mAP50 Precision Recall 

Learning Rate : 0.01 
Batch-Size : 16 

Epoch : 150 

Learning Rate : 0.01 

Batch-Size : 16 

0.92947 0.9171 0.87007 

 

The testing results of the YOLOv8 model show optimal performance in the third configuration based 

on Table 8, with 150 epochs, a learning rate of 0.01, and a batch size of 16. With 150 epochs, it means that the 

optimal model is obtained after the data has been read 150 times. The mAP score obtained is 0.92, with 

precision and recall values of 0.91 and 0.87, respectively. Compared to previous research and also with the 

implementation of the model on datasets that have never been tested before, the crowd detection model has 

demonstrated improved performance and represents the best development of the YOLOv8 model. 

 

 

Figure 8. Loss graph and metrics when training YOLOv8 

 

From Figure 8, YOLOv8 training graph shows that the loss continues to decrease over time as the 

epoch value increases. This indicates that the model continues to evolve, thus showing no signs of overfitting. 

Overfitting occurs when the model performs better during the training phase compared to testing. 

 

 

 

Figure 9. Metric graph when testing YOLOv8 

 

Figure 9 shows the YOLOv8 testing graph, the mAP value for a threshold of 0.5 is observed to be 

0.929. The precision-recall graph shows an inverse relationship, where high precision values result in low recall 

values, and vice versa.  

 

Table 9. CvT Classification Model Result for Roboflow Dataset 

Hyperparameter Accuracy F1-Score Precision Recall Average Loss 

Epoch : 50 

Learning Rate : 0.0001 

0.84 0.84 0.86 0.84 0.685 
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Hyperparameter Accuracy F1-Score Precision Recall Average Loss 

Batch-Size : 32 

Epoch : 150 

Learning Rate : 0.0001 
Batch-Size : 32 

0.85 0.85 0.87 0.85 0.625 

Epoch : 500 

Learning Rate : 0.0001 
Batch-Size : 32 

0.84 0.84 0.86 0.84 0.713 

 

Table 10. CvT Classification Model Result for RHC + Bank Dataset 

Hyperparameter Accuracy F1-Score Precision Recall Loss 

Epoch : 50 
Learning Rate : 0.0001 

Batch-Size : 32 

0.47 0.36 0.46 0.47 0.52 

Epoch : 150 
Learning Rate : 0.0001 

Batch-Size : 32 

0.51 0.49 0.51 0.51 0.67 

Epoch : 500 
Learning Rate : 0.0001 

Batch-Size : 32 

0.66 0.58 0.60 0.66 0.34 

 

Table 11. Pre-Trained CVT Classification Model Results for RHC + Bank Dataset 

Hyperparameter Accuracy F1-Score Precision Recall Loss 

Epoch : 5 0.91 0.90 0.91 0.91 0.31 

 

CvT result can be seen from Table 9, Table 10, and Table 11. Classification using CvT yielded 

different results on the Roboflow dataset and the RHC + Bank dataset. The best results were obtained with the 

Roboflow dataset, achieving an accuracy of 0.85. In contrast, the RHC + Bank dataset produced significantly 

lower results during the CvT training process, ranging only between 0.4 and 0.6. The Pre-Trained CvT was 

tested to enhance the CvT model's performance on the RHC + Bank dataset. Higher performance was achieved 

when testing with the RHC + Bank dataset using the Pre-Trained CvT and 5 epochs, resulting in an accuracy 

of 0.91, an F1-score of 0.90, and both precision and recall of 0.91. 

 

 
Figure 10. Testing Result of RHC Dataset using Confusion Matrix 

 

The confusion matrix shown evaluates the performance of a classification model used to distinguish 

between two categories: "normal" and "padat" (crowded). The matrix displays the number of correct and 

incorrect predictions made by the model in a tabular format. Overall, the confusion matrix demonstrates that 

the model has a high accuracy, with most predictions being correct. The minor misclassifications indicate areas 

where the model could be further refined for improved performance. 

 

4.2.  Discussion 

The testing results obtained through the YOLOv8 and CvT modeling demonstrate their reliability, 

consistent with previous research. The YOLOv8 testing results show little difference between recall and 

precision. This indicates that 0.87 parts of the head data were successfully predicted as heads, while 0.91 parts 
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predicted as heads still include some incorrect predictions as heads. Precision focuses on quantity, while recall 

focuses on quality. 

The combination of hyperparameters can influence the indication of overfitting. The results of the 

YOLOv8 modeling do not indicate overfitting. This can be seen from the stable downward movement of the 

testing graph for loss values and the upward trend for precision, recall, and mAP. This suggests that with epoch 

value 150, learning rate 0.01, and batch size 16, it has become a balanced combination to enhance the 

performance of YOLOv8 when applied to this research's study case (crowd detection). 

The pre-trained CvT model yielded the best results for density classification. The differing results 

between the Roboflow dataset and the RHC + Bank dataset could be due to the possibility of overfitting in one 

of the dataset tests or could be related to data variation. The best classification results were obtained by CvT 

with the RHC + Bank dataset because this dataset tends to be more diverse and easier to distinguish between 

classes. 

The use of YOLOv8 and CvT for detection and classification of density levels is appropriate. Given 

that previous research has shown YOLOv8 to provide the best results as an object detector, it is also suitable 

for detecting density. Additionally, the use of CvT in classification tasks has proven to give better results 

compared to ViT, as the convolutional layers in CvT enhance the precision of transformers for density 

classification. Both models work in a pipeline and have achieved the research objective of addressing the issues 

of density detection and classification, and conducting new experiments by combining both models for the 

tasks of density detection and classification. The results of previous experiments and those in this research can 

differ, showing either lower or higher performance. This is because in this research, the model was retrained 

using different data from previous research, resulting in potentially different outcomes, but not significantly 

different. Particularly in classification results, the accuracy obtained is quite different from previous research, 

which could be due to the pipeline process that begins with the YOLOv8 model and then is used as input for 

CvT. 

The model developed in this research can be implemented in further platform development. 

Implementation involves integrating it with camera sensors, particularly through CCTV cameras, and 

connecting it to devices such as air conditioners. Configurations related to device integration pose additional 

challenges for further development. An air conditioner integrated with a camera and capable of accurately 

reading density through the developed model can support the implementation of HVAC systems. HVAC helps 

achieve energy savings indoors and ensures smooth air circulation. Efficient air circulation, especially in 

waiting areas, can enhance the comfort experience for visitors awaiting services. 

 

5. CONCLUSION 

The new method combining YOLOv8 and CvT involves YOLOv8 functioning as crowd detection, 

while CvT is utilized for classifying waiting room density levels. The model operates in a pipelining manner, 

where the output from YOLOv8 modeling is used as input for CvT. The optimal results for YOLOv8 were 

obtained with hyperparameter tuning, specifically with an epoch of 150, learning rate of 0.01, and batch size 

of 16. This resulted in an mAP value of 0.92, precision of 0.91, and recall of 0.87 for the YOLOv8 model. The 

classification using CvT has proven reliable in distinguishing each density class, "Normal" and "Crowded." 

Modeling with CvT yielded the best results with the pre-trained CvT and 5 epoch. The best results were 

achieved when using the RHC + Bank dataset, as it was considered more diverse and easier for the model to 

learn to distinguish each class. The evaluation results obtained were a score of 0.91 for accuracy, 0.90 for f1-

score, and 0.91 for recall and precision. 

The research has successfully achieved its objective of combining two models that can detect heads 

and classify density levels. The issue of integrating the two models has been successfully addressed, although 

the results are not as optimal as when the two models work separately. This research has some weaknesses, 

such as the determination or division of dataset classes for "Normal" and "Crowded" density levels. The authors 

still manually divided images into each class based on simple knowledge and considerations. Further 

assessment and validation from spatial planning experts or room efficiency experts are needed, especially 

regarding the accuracy of images with their labels. 
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