Metode Iterasi Tiga Langkah Bebas Turunan Untuk Menyelesaikan Persamaan Nonlinear

Authors

  • M. Nizam Nizam Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau
  • Lendy Listia Nanda Jurusan Matematika, Fakultas Sains dan Teknologi, UIN Sultan Syarif Kasim Riau

Abstract

This project, discusses modification Double Newton method combined with Liang Fang method,
then removed all existing derivative in order to obtain the new iteration method to solve nonlinear
equations. Analytically, indicated that the method has produced seven order of convergence. Numerical
computation shows the resulting method is superior to the other methods discussed.
Keywords: free derivative method, iterative method, nonlinear equations, order of convergence

References

J. H. Mathewa dan K. D Fink, Numerical Method Using Matlab, 3rd Ed, Prentice Hall, New

Jersey, 1999.

Liang Fang, Li Sun, dan Guoping He, An Efficient Newton-Type Method with Fifth-Order

Convergence for Solving Nonlinear Equations, Computational & Applied Mathematics, 27

(2008), 269-274.

Neha Choubey dan J. P . Jaiswal, Derivative-Free Method of Eight-Order For Finding

Simple Root of Nonlinear Equation, Communication in Numerical Analysis, 2 (2015), 90-

Rao V. Dukkipati, Numerical Method New Age International (p) Limited, New Delhi, 2010.

R. G. Bartle dan D. R. Shebert. Introduction to Real Analysis, 4st Ed, Jhon Wiley & Sons,

Inc., New York, 1999.

S. K. Khattri dan I. K. Argyros, How to Develop Fourth and Seventh Order Iterative

Methods?, Novi Sad J. Math, 48 (2010), 61-67.

Traub, J. F., Iterative Methods for the Solution of Equations, Chelsea Publishing

Company, New York, 1977.

Weerakon, S., T. G. I Fernando, A Variant of Newton’s Method with Accelerated ThirdOrder Convergence, Applied Mathematics Latters, 13 (1999), 87-93.

Downloads

Published

2016-11-09

Issue

Section

Control System