Penyelesaian Persamaan Painleve Menggunakan Metode Dekomposisi Adomian Laplace

Authors

  • M. Nizam Muhaijir Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau
  • Wartono Wartono Jurusan Matematika Fakultas Sains dan Teknologi Universitas Islam Negeri Sultan Syarif Kasim Riau

Abstract

This paper discusses about the solving Painleve equation by using Laplace Adomian
Decomposition Method. Laplace Adomian Decomposition Method is a method to solve of nonlinear
ordinary differential equation that combine between Laplace transform and Adomian Decompositiom
Method. Based on calculation seen that the result that gotten by using Laplace Adomian Decomposition
Method to solve Painleve equation are same with Adomian Decomposition Method. The result that
obtained show the method this is more efecctive and accurate to draw near the exact solution if compared
with homotopy perturbation method.
Keywords : Adomian Decomposition Method, Laplace Adomian Decomposition Method, Homotopy
Pertubation Method, Painleve Equation.

References

Batiha, B., et. al., Application of variational iteration method to a general Riccati equation,

International Mathematical Forum, 56(2) : 2759 – 2770, 2007.

Chowdhury, M. S. H., Solving linier and nonlinier differential equations by homotopy

perturbation method, Faculty of Science and Thechnology Universiti Kebangsaan Malaysia,

Thesis : 33 – 37, 2007.

Hesemaddini, E., et.al., Homotopy perturbation method for second Painleve equation and

comparisons with analityc continuation extension and Chebishev series method, Int. Mathematical

Forum, 13(5) : 629 – 637, 2010.

Kiyamas, O., An algorithm for solving initial value problems using Laplace Adomian

decomposition method, Applied Mathematical Science, 30(3) : 1453 – 1459, 2009.

Syam, M. I. and Hamdan, A., An efficient method for s olving Bratu equations, Applied

Mathematics and Computation, 176 : 704 – 713, 2006.

Vahidi, A. R., Improving the accuracy of solutions of linear and nonlinier ODEs in

decomposition method, Australian Journal of Basic and Applied Sciences, 3(3) : 2255 – 2261,

Yusufoglu, E., Numerical solution of Duffing equation by the Laplace decomposition

algorithm, Applied Mathematics and Computation, 177 : 572 – 580, 2006.

Buku :

Adomian, G., Solving Frontier Problems of Physics : The Adomian Decomposition

Method, Kluwer Academic, Dordrecht, 1994.

Campbell, S. L., An Introduction to Differential Equations and Their Applications, 2th

Edition, Wadswort, Inc., USA, 1990.

Edwards, C. H. and Penney, D. E., Differential Equations & Linear Algebra, Printice-Hall, Inc.,

New Jersey, 2001.

Kreyszig, E., Advance Engineering Mathematics, 9th Edition, Jhon Wiley & Sons, Inc.,

Singapore, 2006.

Varberg, D, Edwin J. P, and Steven E. R., Calculus, 9th Edition, Person Education, Inc., USA, 2007.

Downloads

Published

2012-10-03

Issue

Section

Control System