Mesin Rekomendasi Menggunakan Algoritma Alternating Least Square (ALS) pada Goodreads
DOI:
https://doi.org/10.24014/coreit.v6i2.11578Abstract
Sistem rekomendasi merupakan sistem yang dapat memberikan rekomendasi berupa prediksi rating pada suatu item. Ada banyak cara dalam merekomendasikan suatu item kepada pengguna, salah satunya adalah Alternating Least Square. Goodreads adalah situs web buku yang menjelaskan sinopsis dan memberi peringkat untuk buku, dan Goodreads membagikan peringkat pengguna mereka ke item di Kaggle untuk dianalisis. Oleh karena itu, penulis ingin merancang, mengimplementasikan, menguji serta ingin mengevaluasi mesin rekomendasi buku Goodreads mulai dari rating pengguna hingga item sebagai alternatif pemecahan masalah dari rekomendasi peringkat buku di Goodreads sekarang ini. Terdapat 981.756 data yang diolah menggunakan Alternating Least Square dengan 80% data latih dan 20% data uji. Hasil prediksi dievaluasi dengan Mean Absolute Error (MAE) dan Root Mean Square Error (RMSE). Hasil penelitian ini menunjukkan bahwa Root Mean Square Error 0.67 dan Mean Absolute Error 0.52 dan dapat dikatakan mesin yang dibuat memiliki error varians yang kecil karena memiliki kesalahan di bawah 1.00.
References
F. Ricci, L. Rokach and B. Shapira, "Recommender Systems: Introduction and Challenges," in Recommender systems handbook, Second edition, New York, Springer Science+Business Media, 2015, pp. 1-34.
P. B.Thorat, R. Goudar and S. Barve, "Survey on Collaborative Filtering, Content-based Filtering and Hybrid Recommendation System," International Journal of Computer Applications, pp. 31-36, 2015.
J. B. Schafer, D. Frankowski, S. Sen and J. Herlocker, "Collaborative Filtering Recommender Systems," Springer-Verlag Berlin Heidelberg, pp. 291-324, 2007.
M. Thelwall and K. Kousha, "Goodreads: A Social Network Site for Book Readers," Journal of the Association for Information Science and Technology, pp. 1-23, 2016.
I. S. Wahyudi, "Big Data Analytic untuk Pembuatan Rekomendasi Koleksi Film Personal Menggunakan Mlib Apache Spark," Berkala Ilmu Perpustakaan dan Informasi, vol. 14, pp. 11-25, 2018.
J. Fadlil and W. F. Mahmudy, "Pembuatan Sistem Rekomendasi Menggunakan Decision Tree dan Clustering," Kursor, vol. 3, pp. 45-66, 2007.
E. W. Wibowo, S. Rochimah and A. Munif, "Penerapan Algoritma Squeezer untuk Memberikan Rekomendasi Pilihan Lagu Berdasarkan Daftar Lagu yang Dimainkan pada Pemutar MP3 Android," Jurnal Teknik Pomits, vol. 2, pp. A-111 - A-116, 2013.
V. Kotu and B. Deshpande, "Collaborative Filtering," in Data Science: Concepts and Practice, Cambridge, Morgan Kaufmann Publishers, 2019, p. 353.
G. Linden, B. Smith and J. York, "Amazon.com Recommendations: Item-to-Item Collaborative Filtering," IEEE Internet Computing, pp. 76-80, 2003.
B. Sarwar, G. Karypis, J. Konstan and J. Riedl, "Item-based Collaborative Filtering Recommendation Algorithms," WWW '01: Proceedings of the 10th international conference on World Wide Web, pp. 285-295, 2001.
B. Schafer, J. Konstan and J. Riedl, "E-Commerce Recommendation Applications," Data Mining and Knowledge Discovery, pp. 115-153, 2001.
Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin and J. M. Hellerstein, "Distributed GraphLab: A Framework for Machine Learning in the Cloud," Proceedings of the VLDB Endowment (PVLDB), Vol. 5, pp. 716-727, 2012.
Y. Zhou, D. M. Wilkinson, R. Schreiber and R. Pan, "Large-Scale Parallel Collaborative Filtering for the Netflix Prize," in Algorithmic Aspects in Information and Management, 4th International Conference (AAIM), Shanghai, 2008.
Y. Koren, R. Bell and C. Volinsky, "Matrix Factorization Techniques for Recommender Systems," Computer, Vol. 42, pp. 30-37, 2009.
S. Schelter, C. Boden, M. Schenck and A. Alexandrov, "Distributed Matrix Factorization with MapReduce using a series of Broadcast-Joins," in The 7th ACM Conference on Recommender Systems,, New York, 2013.
R. Gemulla, E. Nijkamp, P. J. Haas and Y. Sismanis, "Large-scale matrix factorization with distributed stochastic gradient descent," in The 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, 2011.
B. M. Khan, A. Mansha, F. H. Khan and S. Bashir, "Collaborative Filtering based Online Recommendation Systems: A Survey," in International Conference on Information & Communication Technologies, Karachi, Pakistan, 2017.
Downloads
Published
Issue
Section
License
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to CoreIT journal and published by Informatics Engineering Department Universitas Islam Negeri Sultan Syarif Kasim Riau as publisher of the journal.
Authors who publish with this journal agree to the following terms:
Authors automatically transfer the copyright to the journal and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike (CC BY SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate permission for non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).