Implementasi Algoritma FP-Growth untuk Menemukan Pola Keterkaitan Antara Matakuliah Pemrograman dan Matakuliah Matematika
DOI:
https://doi.org/10.24014/coreit.v7i2.15351Abstract
The specification of programming skills is one of the focuses of learning in the Informatics Engineering study program which requires students to understand and get good grades in all courses related to programming. The subject that is considered to have a relationship with the programming field is the Mathematics course. Efforts to determine the correlation between programming courses and mathematics courses through one of the association algorithms in data mining, namely the FP-Growth algorithm. FP-Growth was chosen because it has a faster data pattern execution rate than the a priori algorithm. The final stage of KDD produces 1227 data which is then processed using the FPGrowth algorithm. Tests with a minimum support value of 0.5 and minimum confidence of 0.7 show the same number of patterns between applications built with the SPMF application of 52250 patterns. The highest support value of 51% and the highest confidence value of 98% and the highest lift ratio value of 1.1941 in the combination of itemset patterns indicate that if students pass programming courses, then mathematics courses can also pass or vice versa.References
UIN Suska Riau, Panduan Dan Informasi Akademik. Pekanbaru: Suska Press, 2018.
B. D. Meilani and M. Asadulloh, “Data Mining untuk Menggali Pola Mahasiswa Baru
Menggunakan Metode Frequent Pattern Growth (Studi Kasus: Institut Teknologi Adhi Tama
Surabaya),” in Prosiding Seminar Nasional Sains dan Teknologi Terapan, 2015, pp. 269–276.
R. Anggrainingsih, N. R. Khoirudin, and H. Setiadi, “Discovering drugs combination pattern using
FP-growth algorithm,” in 2017 4th International Conference on Electrical Engineering, Computer
Science and Informatics (EECSI), 2017, pp. 1–4.
A. A. Fajrin and A. Maulana, “Penerapan Data Mining Untuk Analisis Pola Pembelian Konsumen
Dengan Algoritma Fp-Growth Pada Data Transaksi Penjualan Spare Part Motor,” Kumpulan Jurnal
Ilmu Komputer (KLIK), vol. 5, no. 01, pp. 1–10, 2018.
R. R. Mahmudah and E. Aribowo, “Penggunaan Algoritma FP-Growth untuk Menemukan Aturan
Asosiasi pada Data Transaksi Penjualan Obat di Apotek (Studi Kasus: Apotek UAD),” JSTIE
(Jurnal Sarjana Teknik Informatika)(E-Journal), vol. 2, no. 3, pp. 130–139, 2014.
N. R. Ardani and N. Fitrina, “Sistem Rekomendasi Pemesanan Sparepart Dengan Algoritma FpGrowth (Studi Kasus Pt. Rosalia Surakarta),” SEMNASTEKNOMEDIA ONLINE, vol. 4, no. 1, p. 3,
Ririanti, “Implementasi Algoritma FP-Growth Pada Aplikasi Prediksi Persediaan Sepeda Motor
(Studi Kasus PT. Pilar Deli Labumas),” Pelita Informatika Budi Darma, vol. 6, no. 1, pp. 139–144, 2014.
M. I. Ghozali and W. H. Sugiharto, “Analisa Pola Belanja Menggunakan Algoritma Fp Growth, Self
Organizing Map (Som) Dan K Medoids,” Simetris: Jurnal Teknik Mesin, Elektro dan Ilmu Komputer, vol. 8, no. 1, pp. 317–326, 2017.
O. Maimon and L. Rokach, Data mining and knowledge discovery handbook. Springer, 2005.
M. Fauzy and I. Asror, “Penerapan metode association rule menggunakan algoritma apriori pada
simulasi prediksi hujan wilayah kota bandung,” Jurnal Ilmiah Teknologi Infomasi Terapan, vol. 2,
no. 3, 2016.
Downloads
Published
Issue
Section
License
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to CoreIT journal and published by Informatics Engineering Department Universitas Islam Negeri Sultan Syarif Kasim Riau as publisher of the journal.
Authors who publish with this journal agree to the following terms:
Authors automatically transfer the copyright to the journal and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike (CC BY SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate permission for non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).