Public Opinion Sentiment Analysis on Train Transport in Jakarta Using a Hybrid Model Machine Learning
DOI:
https://doi.org/10.24014/coreit.v10i2.31865Keywords:
CNN, Hybrid Model, Logistic Regression, Sentiment Analysis, SVM,Abstract
Transportation is a key element in smoothing the wheels of the economy and connecting various regions, especially in big cities like Jakarta which has a high population density. This leads to dense and complex traffic conditions. Improving the quality and facilities of public transportation is important to overcome these problems. However, people are still reluctant to use public transportation for various reasons. Therefore, it is important to understand public sentiment towards public transportation in Jakarta. This research focuses on sentiment analysis of train-based transportation, namely KRL, MRT, and LRT. Sentiment analysis is conducted using a hybrid learning model with a voting model method, which combines SVM, logistic regression, and CNN algorithms. The data used is labeled with InSet sentiment dictionary and extracted features using TF-IDF method. The modeling results show that this hybrid model produces 89% accuracy for the KRL dataset, 88% for the MRT dataset, and 81% for the LRT dataset. However, this model still has difficulty in predicting neutral and positive classes. The results of this study show that hybrid learning with the voting model method can provide quite good results in public transportation sentiment analysis, but there is still room for improvement in the classification of neutral and positive sentiments. The findings provide important insights for the development of strategies to improve the quality of public transportation and encourage people to use the service more.
References
A. Fatoni and D. Hardianti, “Pengaruh Fasilitas Dan Kualitas Pelayanan Terhadap Keputusan Menggunakan Jasa Transportasi Mrt Atau Mass Rapid Transit,” Mediastima, vol. 26, no. 1, pp. 117–134, 2020, doi: 10.55122/mediastima.v26i1.99.
M. Kadarisman, “Kebijakan Transportasi Kereta Cepat Jakarta Bandung Dalam Mewujudkan Angkutan Ramah Lingkungan,” J. Manaj. Transp. Logistik, vol. 4, no. 3, p. 251, 2018, doi: 10.54324/j.mtl.v4i3.167.
D. I. Sari, Y. F. Wati, and Widiastuti, “Analisis Sentimen Dan Klasifikasi Tweets Berbahasa Indonesia Terhadap Transportasi Umum Mrt Jakarta Menggunakan Naïve Bayes Classifier,” J. Ilm. Inform. Komput., vol. 25, no. 1, pp. 64–75, 2020, doi: 10.35760/ik.2020.v25i1.2427.
A. Novantirani, M. K. Sabariah, and V. Effendy, “Analisis Sentimen pada Twitter untuk Mengenai Penggunaan Transportasi Umum Darat Dalam Kota dengan Metode Support Vector Machine,” e-Proceeeding Eng., vol. 2, no. 1, pp. 1–7, 2015.
M. Okza Pradhana and S. Adinugroho, “Analisis Sentimen Masyarakat terhadap Uji Coba LRT Jakarta Menggunakan Improved K-Nearest Neighbor dan Information Gain,” J. Pengemb. Teknol. Inf. dan Ilmu Komput., vol. 4, no. 6, pp. 1888–1896, 2020, [Online]. Available: http://j-ptiik.ub.ac.id
R. Novaneliza, F. Handayani, R. J. Suhandar, H. Surono, N. S. Azzahra, and D. Nadilla, “Perbandingan Algoritma Untuk Analisis Sentimen Pada Twitter Transportasi Umum Commuterline,” J. Sains Komput. Inform. (J-SAKTI, vol. 7, no. 1, pp. 13–21, 2023.
D. Agustina and F. Rahmah, “Analisis Sentimen pada Sosial Media Twitter terhadap MRT Jakarta Menggunakan Machine Learning,” Insearch (Information Syst. Res. J., vol. 2, pp. 1–6, 2022.
M. A. Iftikar and Y. Sibaroni, “Analisis Sentimen Twitter: Penanganan Pandemi Covid-19 Menggunakan Metode Hybrid Naïve Bayes, Decision Tree, dan Support Vector Machine,” e-Proceeding Eng., vol. 9, no. 3, pp. 1809–1826, 2022.
Z. Kastrati, F. Dalipi, A. S. Imran, K. P. Nuci, and M. A. Wani, “Sentiment analysis of students’ feedback with nlp and deep learning: A systematic mapping study,” Appl. Sci., vol. 11, no. 9, 2021, doi: 10.3390/app11093986.
F. V. Sari and A. Wibowo, “Analisis Sentimen Pelanggan Toko Online Jd.Id Menggunakan Metode Naïve Bayes Classifier Berbasis Konversi Ikon Emosi,” J. SIMETRIS, vol. 10, no. 2, pp. 681–686, 2019.
N. A. Salsabila, “ANALISIS SENTIMEN PADA MEDIA SOSIAL TWITTER TERHADAP TOKOH GUS DUR MENGGUNAKAN METODE NAÏVE BAYES DAN SUPPORT VECTOR MACHINE (SVM),” UNIVERSITAS ISLAM NEGERI SYARIF HIDAYATULLAH JAKARTA, 2022.
Nugroho Arif Sudibyo, Ardymulya Iswardani, Kartika Sari, and Siti Suprihatiningsih, “Penerapan Data Mining Pada Jumlah Penduduk Miskin Di Indonesia,” J. Lebesgue J. Ilm. Pendidik. Mat. Mat. dan Stat., vol. 1, no. 3, pp. 199–207, 2020, doi: 10.46306/lb.v1i3.42.
M. O. Stitson, J. A. E. Weston, V. Vovk, and V. Vapnik, “Theory of Support Vector Machines,” 1996.
F. D. Pramakrisna, F. D. Adhinata, and N. A. F. Tanjung, “Aplikasi Klasifikasi SMS Berbasis Web Menggunakan Algoritma Logistic Regression,” Teknika, vol. 11, no. 2, pp. 90–97, 2022, doi: 10.34148/teknika.v11i2.466.
S. N. Listyarini and D. A. Anggoro, “Analisis Sentimen Pilkada di Tengah Pandemi Covid-19 Menggunakan Convolution Neural Network (CNN),” J. Pendidik. dan Teknol. Indones., vol. 1, no. 7, pp. 261–268, 2021, doi: 10.52436/1.jpti.60.
I. F. Yuliati and P. R. Sihombing, “Penerapan Metode Machine Learning dalam Klasifikasi Risiko Kejadian Berat Badan Lahir Rendah di Indonesia,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 20, no. 2, pp. 417–426, 2021, doi: 10.30812/matrik.v20i2.1174.
F. Koto and G. Y. Rahmaningtyas, “Inset lexicon: Evaluation of a word list for Indonesian sentiment analysis in microblogs,” Proc. 2017 Int. Conf. Asian Lang. Process. IALP 2017, vol. 2018-Janua, no. December, pp. 391–394, 2017, doi: 10.1109/IALP.2017.8300625.
B. Kholifah, I. Thoib, N. Sururi, and N. D. Kurnia, “Analisis Sentimen Warganet Terhadap Isu Layanan Transportasi Online Berbasis InSet Lexicon Menggunakan Logistic Regression,” Kumpul. J. Ilmu Komput., vol. 11, no. 1, pp. 14–25, 2024.
Downloads
Published
Issue
Section
License
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to CoreIT journal and published by Informatics Engineering Department Universitas Islam Negeri Sultan Syarif Kasim Riau as publisher of the journal.
Authors who publish with this journal agree to the following terms:
Authors automatically transfer the copyright to the journal and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike (CC BY SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate permission for non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).