Sentiment Analysis on Hate Speech Post 2024 Election for Elected President Using a Hybrid Model Machine Learning
DOI:
https://doi.org/10.24014/coreit.v10i2.31927Keywords:
Election, Hybrid Model, K-Nearest Neighbors, Long Short-Term Memory, Naive Bayes,Abstract
One of the important events in the democratic life of a country is the general election. In addition, the possibility of hate speech appearing on social media increases as political tensions increase. This hate speech can take the form of negative comments, insults, or even threats against the elected president. This research uses the content of tweets as a data source to analyze public opinion and sentiment towards the elected president. This research aims to analyze sentiment towards hate speech held by twitter users towards the elected president after the 2024 election by building a hybrid model using 3 algorithms, namely k-nearest neighbors, long short-term memory and naive bayes. The results of tests carried out with 12,000 tweet data that show the naive bayes method classification results have an accuracy of 72%, the long short-term memory classification results show an accuracy of 78%, the k-nearest neighbors method accuracy value is 83%, and the hybrid model accuracy value is 78%. Considering the accuracy values of the three algorithm method, by using a hybrid model we can increase the accuracy by combining the three algorithm models. from previously having the lowest accuracy of 72%, by using a hybrid model we can increase the accuracy to 78%.
References
D. Faroek, M. Yusuf, and G. Syatauw, “Sentiment Analysis of the Popularity of Parties Supporting the 2024 Presidential Candidates on Twitter Using the Naive Bayes Classifier Algorithm,” Antivirus J. Ilm. Tek. Inform., vol. 17, no. 2, pp. 216–227, 2023, doi: 10.35457/antivirus.v17i2.3261.
R. P. Bastoni, “Analisis Sentimen Opini Publik Terhadap Calon Presiden Indonesia 2024 Menggunakan Metode Naive Bayes Dan Lexicon Based Pada Platform YouTube Skripsi Oleh,” 2024.
Z. Febrian, “Perbandingan Algoritma Klasifikasi Naïve Bayes, Logistic Regression, Dan KNN Untuk Analisis Sentimen Peminatan Masyarakat Terhadap Kandidat Bakal Calon …,” 2023, [Online]. Available: https://repository.ar-raniry.ac.id/id/eprint/34820/%0Ahttps://repository.ar-raniry.ac.id/id/eprint/34820/1/LAPORAN TUGAS AKHIR %28Zakwan Febrian%29 %281%29 %281%29.pdf
M. S. Hazimi, “Analisis Sentimen Masyarakat terhadap Calon Kandidat Presiden dalam Persiapan Pemilu Tahun 2024 dengan menggunakan Metode K-Nearest Neigjbor dan Optimasi Particle Swarm Optimization,” p. 101, 2024, [Online]. Available: https://repository.uinjkt.ac.id/dspace/handle/123456789/76789
D. A. Firdlous, R. Andrian, and S. Widodo, “Sentiment Analysis Public Twitter on 2024 Election using the Long Short Term Memory Model,” Sistemasi, vol. 12, no. 1, p. 52, 2023, doi: 10.32520/stmsi.v12i1.2145.
Endrik, A. Nugroho, and A. T. Zy, “Penerapan Algoritma Naive Bayes dan PSO pada Analisis Sentimen Kandidat Calon Presiden 2024,” Remik Ris. dan E-Jurnal Manaj. Inform. Komput., vol. 7, no. 3, pp. 1367–1380, 2023.
A. Saepudin, “Komparasi Algoritma Support Vector Machine Dan K-Nearest Neighbor Berbasis Particle Swarm Optimization Pada Analisis Sentimen Fenomena Tagar #2019Gantipresiden,” Progr. Stud. Magister Ilmu Komput. Sekol. Tinggi Manaj. Inform. Dan Komput. Nusa Mandirikomputer Nusa Mandiri, 2018.
A. R. Rivita, Yusra, and M. Fikry, “Klasifikasi Sentimen Masyarakat di Media Sosial Twitter terhadap Calon Presiden 2024 Prabowo Subianto dengan Metode K-NN,” KLIK Kaji. Ilm. Inform. dan Komput., vol. 3, no. 6, pp. 786–797, 2023, doi: 10.30865/klik.v3i6.890.
A. Tresnani, I. T. R. Yanto, and R. Hidayat, “Preferensi Pengguna Twitter Terhadap Calon Presiden dan Wakil Presiden Indonesia 2024,” JITSI J. Ilm. Teknol. Sist. Inf., vol. 5, no. 1, pp. 9–16, 2024, doi: 10.30630/jitsi.5.1.216.
R. Afrinanda, L. Efrizoni, W. Agustin, and R. Rahmiati, “Hybrid Model for Sentiment Analysis of Bitcoin Prices using Deep Learning Algorithm,” MATRIK J. Manajemen, Tek. Inform. dan Rekayasa Komput., vol. 22, no. 2, pp. 309–324, 2023, doi: 10.30812/matrik.v22i2.2640.
M. Alfonso and D. B. Rarasati, “Sentiment Analysis of 2024 Presidential Candidates Election Using SVM Algorithm,” JISA(Jurnal Inform. dan Sains), vol. 6, no. 2, pp. 110–115, 2023, doi: 10.31326/jisa.v6i2.1714.
F. A. Wenando, R. Hayami, and A. J. Anggrawan, “Analisis Sentimen Pada Pemerintahan Terpilih Pada Pilpres 2019 Ditwitter Menggunakan Algoritme Naïvebayes,” JURTEKSI (Jurnal Teknol. dan Sist. Informasi), vol. 7, no. 1, pp. 101–106, 2020, doi: 10.33330/jurteksi.v7i1.851.
F. T. Industri and U. I. Indonesia, “Analisis Sentimen Calon Presiden Indonesia 2024 Di Facebook Menggunakan Metode Support Vector Machine ( Svm ) Analisis Sentimen Calon Presiden Indonesia 2024 Di Facebook Menggunakan Metode Support Vector Machine ( Svm ),” 2024.
Y. Findawati, U. Indahyanti, Y. Rahmawati, and R. Puspitasari, “Sentiment Analysis of Potential Presidential Candidates 2024: A Twitter-Based Study,” Acad. Open, vol. 8, no. 1, pp. 1–17, 2023, doi: 10.21070/acopen.8.2023.7138.
I. Iin, R. Supriatna, M. Mulyawan, and D. Rohman, “Penerapan Natural Language Processing Dalam Analisis Sentimen Cawapres 2024 Menggunakan Algoritma Naive Bayes,” JATI (Jurnal Mhs. Tek. Inform., vol. 8, no. 1, pp. 1109–1115, 2024, doi: 10.36040/jati.v8i1.8572.
Z. C. Dwinnie and R. Novita, “Penerapan Machine Learning Pada Analisis Sentimen Twitter Sebelum dan Sesudah Debat Calon Presiden dan Wakil Presiden Tahun 2024,” vol. 8, no. April, pp. 758–767, 2024, doi: 10.30865/mib.v8i2.7504.
C. Prianto, N. H. Harani, and I. Firmansyah, “Analisis Sentimen Terhadap Kandidat Presiden Republik Indonesia Pada Pemilu 2019 di Media Sosial Twitter,” J. Media Inform. Budidarma, vol. 3, no. 4, p. 405, 2019, doi: 10.30865/mib.v3i4.1549.
H. Permana, Y. Herry Chrisnanto, and H. Ashaury, “Analisis Sentimen Terhadap Bakal Calon Presiden 2024 Dengan Algoritma Multinomial Naïve Bayes Dan Oversampling Smote,” JATI (Jurnal Mhs. Tek. Inform., vol. 7, no. 5, pp. 3257–3264, 2024, doi: 10.36040/jati.v7i5.7309.
Downloads
Published
Issue
Section
License
The Authors submitting a manuscript do so on the understanding that if accepted for publication, copyright of the article shall be assigned to CoreIT journal and published by Informatics Engineering Department Universitas Islam Negeri Sultan Syarif Kasim Riau as publisher of the journal.
Authors who publish with this journal agree to the following terms:
Authors automatically transfer the copyright to the journal and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-ShareAlike (CC BY SA) that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
Authors are able to enter into separate permission for non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).