Strategi Digital Shelf Management UMKM dengan Algoritma Apriori
DOI:
https://doi.org/10.24014/jti.v8i2.19005Abstract
Pandemi Covid-19 memberikan dampak pada sebagian Usaha Kecil, Mikro dan Menengah (UMKM) mengalami penurunan penjualan 70-80% dari sebelumnya. Oleh karena itu, perlu strategi yang tepat dalam rangka meningkatkan penjualan. Upaya yang dilakukan adalah dengan menciptakan stimulus pada sisi permintaan melalui pemanfaatan e-commerce. Permasalahan yang terjadi dari penerapan e-commerce salah satunya adalah digital shelf management -penempatan produk pada e-commerce-UMKM yang tidak sesuai dengan pola pembelian konsumen. Salah satu pendekatan yang dapat digunakan dengan menggunakan pendekatan algoritma apriori. Tahapan yang dilakukan adalah data selection, pre-processing data, pengembangan model. Hasil penelitian ini adalah usulan digital shelf management khususnya pada tata letak produk UMKM pada e-commerce dengan pendekatan algoritma apriori.
References
B. P. Sirger, “Survei: 80% UMKM Alami Penurunan Pendapatan Selama Pandemi,” Wartaekonomi.co.id, 2021.
J. P. Prakoso, “Survei LIPI: Lebih dari 70 Persen UMKM Alami Penurunan Omzet,” ekonomi.bisnis.com, 2020.
HumasLIPI, “Survei Kinerja UMKM di Masa Pandemi COVID19,” lipi.go.id, 2020.
E. B. Hansen and S. Bøgh, “Artificial intelligence and internet of things in small and medium-sized enterprises: A survey,” J. Manuf. Syst., vol. 58, no. October 2019, pp. 362–372, 2021, doi: 10.1016/j.jmsy.2020.08.009.
I. N. Pujawan and E. R. Mahendrawathi, “Supply Chain Management Edisi Kedua,” Surabaya Guna Widya, 2010.
Kompas.com, “Tren Belanja Online Naik, BI Proyeksi Nilai Transaksi E-Commerce di 2021 Sentuh Rp 395 Triliun,” Kompas.com, 2021.
I. As’ad, F. Ahmad, and I. Sentosa, “An Empirical Study of E-Commerce Implementation Among SME in Indonesia,” Int. J. Indep. Res. Stud., vol. 1, no. 1, pp. 13–22, 2012.
M. Kartiwi, “Case Studies of E-commerce Adoption in Indonesian SMEs: The Evaluation of Strategic Use,” Australas. J. Inf. Syst., vol. 14, no. 1, pp. 69–80, 2006.
E. Breugelmans, K. Campo, and E. Gijsbrechts, “The Effects of Shelf Display on Online Grocery Choices,” in SSRN Electronic Journal, 2006, pp. 1–21. doi: 10.2139/ssrn.944397.
N. Isa, N. A. Kamaruzzaman, M. A. Ramlan, N. Mohamed, and M. Puteh, “Market Basket Analysis of Customer Buying Patterns at Corm Café,” Int. J. Eng. Technol., vol. 7, no. October, pp. 119–123, 2018, doi: 10.14419/ijet.v7i4.42.25692.
S. Panjaitan et al., “Implementation of Apriori Algorithm for Analysis of Consumer Purchase Patterns,” J. Phys. Conf. Ser., vol. 1255, no. 1, pp. 1–8, 2019, doi: 10.1088/1742-6596/1255/1/012057.
U. Tarigan, U. P. P. Tarigan, I. H. Rahman, and I. Rizkya, “Design of facility layout with lean service and market basket analysis method to simplification of service process in the supermarket,” in MATEC Web of Conferences, 2018, vol. 197, pp. 1–4. doi: 10.1051/matecconf/201819714006.
I. D. Widodo, H. Ulfah, and K. N. Anggraeni, “Redesign Super Market Layout Analysis Based on Hidden Customer Purchase Behaviour,” in 2021 IEEE 8th International Conference on Industrial Engineering and Applications, ICIEA 2021, 2021, pp. 261–264. doi: 10.1109/ICIEA52957.2021.9436714.
D. Al Attal, M. Naser, N. AlBaghli, N. Al Muhaimeed, and S. A. Al Awadh, “Redesigning a retail store based on association rule mining,” in Proceedings of the International Conference on Industrial Engineering and Operations Management, 2018, vol. 2018, no. JUL, pp. 1948–1965.
C. Bapna, P. K. Reddy, and A. Mondal, “Improving product placement in retail with generalized high-utility itemsets,” in Proceedings - 2020 IEEE 7th International Conference on Data Science and Advanced Analytics, DSAA 2020, 2020, pp. 60–69. doi: 10.1109/DSAA49011.2020.00018.
F. Almaslamani, R. Abuhussein, H. Saleet, L. AbuHilal, and N. Santarisi, “Using big data analytics to design an intelligent market basket-case study at sameh mall,” Int. J. Eng. Res. Technol., vol. 13, no. 11, pp. 3444–3455, 2020, doi: 10.37624/ijert/13.11.2020.3444-3455.
K. K. Widiartha, D. Putu, and D. Kumala, “Shopping Cart Analysis System in Product Layout Management with Apriori Algorithm,” Int. J. Appl. Comput. Sci. Inform. Eng., vol. 1, no. 2, pp. 53–64, 2019, doi: 10.33173/acsie.55.
A. Setiawan, G. S. Budhi, D. H. Setiabudi, and R. Djunaidy, “Data mining applications for sales information system using market basket analysis on stationery company,” in Proceedings - 2017 International Conference on Soft Computing, Intelligent System and Information Technology: Building Intelligence Through IOT and Big Data, ICSIIT 2017, 2017, vol. 2018-Janua, pp. 337–340. doi: 10.1109/ICSIIT.2017.39.
M. . Zhao, A. Thomas, and R. Jayadi, “An Application of Apriori-based Market Basket Analysis for Restaurant Menu Recommendation System: Case Study of XYZ Restaurant in Indonesia,” Indones. J Elec Eng Comp Sci, no. June 2020, pp. 1–8, 2021.
K. K. Halim, S. Halim, and Felecia, “Business intelligence for designing restaurant marketing strategy: A case study,” in Procedia Computer Science, 2019, vol. 161, pp. 615–622. doi: 10.1016/j.procs.2019.11.164.
S. Halim, T. Octavia, and C. Alianto, “Designing facility layout of an amusement arcade using market basket analysis,” in Procedia Computer Science, 2019, vol. 161, pp. 623–629. doi: 10.1016/j.procs.2019.11.165.
K. Tabianan, S. Nagalingham, and L. . Cheong, “Market Basket Analysis for E-Commerce using Association Rule Mining,” INTI J., vol. 2020, no. August, pp. 1–8, 2020.
A. R. Riszky and M. Sadikin, “Data Mining Menggunakan Algoritma Apriori untuk Rekomendasi Produk bagi Pelanggan,” J. Teknol. dan Sist. Komput., vol. 7, no. 3, pp. 103–108, 2019, doi: 10.14710/jtsiskom.7.3.2019.103-108.
Y. L. Chen, J. M. Chen, and C. W. Tung, “A data mining approach for retail knowledge discovery with consideration of the effect of shelfspace adjacency on sales,” Decis. Support Syst., vol. 42, no. 3, pp. 1503–1520, 2006.
Downloads
Published
Issue
Section
License
Authors who publish with Jurnal Teknik Industri: Jurnal Hasil Penelitian dan Karya Ilmiah dalam Bidang Teknik Industri agree to the following terms:
1. Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License (CC BY-NC-SA 4.0) that allows others to share the work with an acknowledgment of the work's authorship and initial publication in this journal.
2. Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgment of its initial publication in this journal.
3. Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).