Pemodelan Pengguna berdasarkan Klasifikasi SMS Menggunakan Support Vector Machine pada Perangkat Bergerak Android
DOI:
https://doi.org/10.24014/sitekin.v12i2.1026Keywords:
klasifikasi topik, pemodelan pengguna, perangkat bergerak, Support Vector MachineAbstract
Perangkat bergerak, seperti smartphone dan tablet, memiliki peranan penting dalam kehidupan sehari-hari penggunanya. Berdasarkan interaksi pengguna perangkat bergerak dapat dibuat suatu model yang merepresentasikan pengguna tersebut. Dalam penelitian ini, dilakukan pemodelan pengguna perangkat bergerak dengan implementasi proof-of-concept berupa rancang bangun aplikasi Android yang dapat digunakan untuk mengklasifikasikan SMS pada perangkat bergerak dengan menggunakan SVM (Support Vector Machine). Model klasifikasi SVM dibangun dengan menggunakan 640 SMS sebagai data latih dengan kernel gaussian RBF, serta pemilihan feature dengan metode DF. Dari hasil pengujian terhadap 160 SMS sebagai data uji, diperoleh akurasi untuk topik Pribadi sebesar 88.75%, diikuti topik Pekerjaan sebesar 5%.
References
Bozkir, A.S., dan Sezer, E., Mobile Mind: A Fully Mobile Platform Based Machine Learning Application, Hacettepe University, Computer Engineering Department, Ankara, Turkey, 2011.
Figura, J., Machine Learning for Google Android, Thesis. Institute of Formal and Applied Linguistics, Faculty of Mathematics and Physics, Charles University in Prague, 2012.
Gerber, S., Fry, M., Kay, J., Kummerfeld, B., Pink, G., dan Wasinger, R., PersonisJ: Mobile, Client-Side User Modelling, UMAP, LNCS 6075, pp. 111–122, Springer-Verlag Berlin Heidelberg 2010.
Herbrich, R., dan Graepel, T., Handbook of Natural Language Processing. 2010.
Johnson, A., dan Taatgen, N., User Modeling, Handbook of Human Factors in Web Design, Lawrence Erlbaum Associates, pp. 424–439, 2005.
Oliveira, R., Karatzoglou, A., Concejero, P., Armenta, A., dan Oliver, N., Towards a Psychographic User Model From Mobile Phone Usage, Vancouver, BC, Canada, 2011.
Park, M.H., Hong, J.H., dan Cho, S.B., Location-Based Recommendation System Using Bayesian User's Preference Model in Mobile Devices, J. Indulska et al. (Eds.): UIC 2007, LNCS 4611, pp. 1130–1139, Springer-Verlag, Berlin Heidelberg, 2007.
Sahs, J., dan Khan, L., A Machine Learning Approach to Android Malware Detection, Intelligence and Security Informatics Conference (EISIC), 2012.
Tsang, S.L., dan Clarke S., Mining User Models for Effective Adaptation of Context-aware Applications, International Journal of Security and its Applications Vol. 2, No. 1, January, 2008.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Copyright Notice
An author who publishes in the SITEKIN Journal agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.