Property Price Prediction Using the Random Forest Regression Algorithm
DOI:
https://doi.org/10.24014/sitekin.v22i2.35804Abstract
This study uses an innovative approach to predicting property prices using machine learning with the Random Forest Regression method. The dataset was obtained from Kaggle and consists of 500 rows with 12 attributes, comprising 10 numerical attributes and 2 categorical attributes. The evaluation results, calculated using the R² score on the test dataset, show strong performance, achieving the highest R² score of 81.88% with a dataset split ratio of 90:10. The scatter plot visualization indicates shows the model's predictions often correspond closely with the actual values, showing strong accuracy, despite a tiny gap between the anticipated and real values. The graph comparing the training data and the actual data shows no significant signs of overfitting or underfitting, demonstrating the Random Forest Regression model's strong accuracy in predicting house prices and its capacity to effectively capture the relationship between independent and dependent variables.References
Anam, K., Nurfadillah, M., & Fauziah, F. (2021). Analisis kinerja keuangan terhadap return saham perusahaan properti dan real estate Indonesia. Jurnal Daya Saing, 7(3), 123-135.
Nasyuli, L. P., Lubis, I., & Elhanafi, A. M. (2023). Penerapan model machine learning algoritma gradient boosting dan linear regression melakukan prediksi harga kendaraan bekas. Jurnal Ilmu Komputer dan Sistem Informasi (JIRSI), 2(2), 299-310.
Yusuf, N. (2024). Prediksi produksi daging sapi di Indonesia menggunakan random forest regression: Analisis data 2018-2025. Jurnal JUIT, 3(2), 134-142.
Pratama, M. A., Munawaroh, M., & Pranoto, W. J. (2024). Perbandingan performa algoritma linear regresi dan random forest untuk prediksi harga bawang merah di Kota Samarinda. Tektonik, 3(2), 172. https://doi.org/10.62017/tektonik
H. Tantyoko, D. K. Sari, and A. R. Wijaya, “Prediksi Potensial Gempa Bumi Indonesia Menggunakan Metode Random Forest Dan Feature Selection,” IDEALIS Indones. J. Inf. Syst., vol. 6, no. 2, pp. 83–89, 2023, doi: 10.36080/idealis.v6i2.3036.
Priliaputri, V. A. (2022). Perbandingan kinerja algoritme naïve bayes dan k-nearest neighbor (KNN) untuk prediksi harga rumah (Tugas akhir). Fakultas Teknik, Departemen Teknik Komputer, Universitas Diponegoro, Semarang.
Hasanah, L. U., Maula, I., & Tholib, A. (2023). Analisis prediksi harga rumah di Jabodetabek menggunakan multiple linear regression. Jurnal Informatika Kaputama (JIK), 7(2).
Purnomo, B. S., & Prasetyaningrum, P. T. (2021). Penerapan data mining dalam mengelompokkan kunjungan wisatawan di Kota Yogyakarta menggunakan metode K-means. JCS-TECH: Journal of Computer Science and Technology, 1(1), 27-32.
Kurniawan, S. Y. (2024). Klasifikasi kelayakan air minum dengan backpropagation neural network berbasis penanganan missing value dan normalisasi (Tugas akhir). Fakultas Sains dan Teknologi, Universitas Islam Negeri Sultan Syarif Kasim Riau, Pekanbaru.
Kusnaidi, M. R., Gulo, T., & Aripin, S. (2022). Penerapan normalisasi data dalam mengelompokkan data mahasiswa dengan menggunakan metode K-means untuk menentukan prioritas bantuan uang kuliah tunggal. Journal of Computer System and Informatics (JoSYC), 3(4), 330-338. https://doi.org/10.47065/josyc.v3i4.2112.
Septian, F. (2023). Optimasi klusterisasi pada lama tempo pekerjaan berbasis gradient boost algorithm. Indonesian Journal of Information Technology. https://doi.org/10.25077/
Ramadhania, R., Ramadhanua, R., Artha Abdillah, A. F., & Ridwana, M. (2024). Studi Komparatif Multinomial Naïve Bayes, Decision Tree, dan K-Nearest Neighbor dalam Klasifikasi Validasi Ulasan Clash of Clans oleh Pengguna Ahli. Jurnal Sains dan Teknologi Indonesia (JUSTIN), 12(4), 81638. https://doi.org/10.26418/justin.v12i4.81638
Anisatuzzumara. (2024). Implementasi Latent Dirichlet Allocation (LDA) dan K-Nearest Neighbors (KNN) pada Sistem Rekomendasi Jurnal Terindeks GARUDA (Tugas Akhir). Universitas Islam Sultan Agung Semarang.
Ibrahim, F. (2024). Perbandingan Performa Algoritma Random Forest Classifier dan Naive Bayes pada Penyakit Diabetes Melitus (Tugas Akhir). Universitas Islam Negeri Syarif Hidayatullah Jakarta.
Sarah, A. M., Kurniadi, B., & Warsini, E. (2023). Implementasi metode regresi linear dalam memprediksi penyakit anemia secara dini. Jurnal Teknologi Komputer dan Sistem Informasi, 3(1), 14-23. http://jurnal.goretanpena.com/index.php/teknisi
Pratama, M. A., Munawaroh, M., & Pranoto, W. J. (2024). Perbandingan Performa Algoritma Linear Regresi dan Random Forest untuk Prediksi Harga Bawang Merah di Kota Samarinda. Tektonik, 1(2), 172-182. https://doi.org/10.62017/tektonik
Hutahaean, J., Yusup, D., & Purwantoro. (2024). Perbandingan metode linear regression, random forest & k-nearest neighbor untuk prediksi produksi hasil panen padi di Provinsi Jawa Barat. Jurnal Mahasiswa Teknik Informatika, 8(3), 3895.
Sembiring, M. A. (2024). Analisis faktor prediksi diagnosis tingkat serangan jantung menggunakan metode regression. Jurnal Teknologi Komputer dan Sistem Informasi, 4(1), 16-22. http://jurnal.goretanpena.com/index.php/teknisi
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Copyright Notice
An author who publishes in the SITEKIN Journal agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.