KESTABILAN TITIK EQUILIBRIUM MODEL SIR (SUSPECTIBLE, INFECTED, RECOVERED) PENYAKIT FATAL DENGAN MIGRASI
DOI:
https://doi.org/10.24014/sitekin.v11i1.552Keywords:
Fatal, Migrasi, Model SIR, Stabil Asimtotik, Titik KesetimbanganAbstract
Pada makalah ini dibahas tentang penyebaran penyakit fatal menggunakan model SIR. Diasumsikan terjadi kelahiran dan kematian alami, kematian akibat penyakit yang dibicarakan dan adanya migrasi. Hasil yang diperoleh yaitu jika dan jika titik kesetimbangan bebas penyakit stabil asimtotik, sebaliknya jika dan jika titik kesetimbangan endemik penyakit stabil asimtotik.
References
Budiantoro, F. Kestabilan Global pada Model Endemik SIR dengan Imigran. Tugas Akhir Mahasiswa Universitas Sebelas Maret, Surakarta. 2009.
Duf, Y. dan Rui Xu. A Delayed SIR Epidemic Model With Nonlinear Incidence Rate And Pulse Vaccination. Math and Informatics. Korean Sigcam and KSCam. 2010.
Guo, H. dkk. Global Stability Of The Endemic Equilibrium Of Multigroup SIR Epidemic Models. Aplied Mathematics Institute. University of Alberta. 2006.
Hale, J. K. dan Kocak, H. Dynamic and Bifurcation. Springer-verlag. New York. 1991.
Meiss, J. D. Differential Dynamical Systems. Society for Industrial and Applied Mathematics. USA. 2007.
Perko, L. Differential Equations and Dynamical Systems. Springer-verlag. New York. 1991.
Pratiwi, N. dan Kartono. Strategi Model Pengendalian Penyebaran Virus Influenza, Jurnal Matematika Vol. 11, No.3, hal.141-145.ISSN:1410-8518. 2008.
Purba, E.M. Analisa Model SIR untuk Kasus Epidemi. Skripsi S1 FMIPA UNRI. Pekanbaru. 2007.
Sriningsih, Riri dan Soleh, M. Model Pemilihan Kepala Daerah dalam Kompetisi Memperoleh Dukungan (Responden)
Supriatna, A. K, dkk. Pembuatan Model Matematika dan Software untuk Penghitungan Tingkat Vaksinasi pada Penyebaran Penyakit Menular. UNPAD. Bandung. 2005.
Tamrin, H. dkk. Model SIR Penyakit Tidak Fatal. Jurnal Matematika Fakultas MIPA UGM. Yogyakarta. 2007.
Wiggins, S. Introduction to Applied Nonlinear Dynamical System and Chaos. Springer Verlag. New York. 1990.
Downloads
Published
Issue
Section
License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License
Copyright Notice
An author who publishes in the SITEKIN Journal agrees to the following terms:
- Author retains the copyright and grants the journal the right of first publication of the work simultaneously licensed under the Creative Commons Attribution-ShareAlike 4.0 License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal
- Author is able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book) with the acknowledgement of its initial publication in this journal.
- Author is permitted and encouraged to post his/her work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of the published work (See The Effect of Open Access).
Read more about the Creative Commons Attribution-ShareAlike 4.0 Licence here: https://creativecommons.org/licenses/by-sa/4.0/.